<table>
<thead>
<tr>
<th>Herbicides</th>
<th>Fungicides</th>
<th>Insecticides</th>
<th>Liquid Fertilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Incorpor.</td>
<td>Pre-Emerge</td>
<td>Post-Emerge</td>
<td>Contact</td>
</tr>
<tr>
<td>Turbo Teejet<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 3 and 7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI Teejet<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 3, 4, 7 and 8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XR Teejet<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 3 and 7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG Teejet<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 3, 4, 7 and 8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teejet<sup>®</sup></td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 3, 4, 7 and 8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TwinJet<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 3, 4 and 9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbo FloodJet<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Reference page 4 and 9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbo TurfJet<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Reference page 4, 7, and 9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FullJet<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Reference page 11.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIUB Teejet<sup>®</sup></td>
<td>Good</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Reference page 5, 7 and 9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disc-Core<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 10.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConJet<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 11.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teejet-UB<sup>®</sup></td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Reference pages 5, 7 and 6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC Teejet<sup>®</sup></td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 5 and 8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TQ Teejet<sup>®</sup></td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 11.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG Full Cone<sup>®</sup></td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 11.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick Teejet<sup>®</sup></td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 13.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StreamJet<sup>®</sup></td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Reference page 12.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Consult the chemical manufacturer's product label for specific rate and application recommendations.
Nozzle selection is often based upon droplet size. The droplet size from a nozzle becomes very important when the efficacy of a particular crop chemical is dependent on coverage, or the prevention of spray leaving the target area is a priority.

The majority of the nozzles used in agriculture can be classified as producing fine, medium, or coarse droplets. Nozzles which produce fine droplets are usually recommended for post-emergence applications which require excellent coverage on leaf surfaces. The most common nozzles used in agriculture are those which produce medium-sized droplets. Nozzles producing medium-sized droplets can be used for preand systemic herbicides, pre-emergence surface-applied herbicides, insecticides, and fungicides.

An important point to remember when choosing a spray nozzle which produces a droplet size is one of the six categories, is that one nozzle can produce different droplet size classifications at different pressures. A nozzle might produce medium-sized droplets at low pressures, while producing fine droplets as pressure is increased.

Droplet size classes are shown in the following tables to assist in choosing an appropriate spray tip.

Drift Droplets

<table>
<thead>
<tr>
<th>Nozzle Type</th>
<th>15 PSI</th>
<th>40 PSI</th>
<th>Approximate Percent of Spray Volume Less Than 200 Microns</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR TeeJet® 110°</td>
<td>14%</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>XR TeeJet® 80°</td>
<td>8%</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>CG TeeJet® 110°</td>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG TeeJet® 80°</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT - Turbo TeeJet®</td>
<td><1%</td>
<td><6%</td>
<td></td>
</tr>
<tr>
<td>TF - Turbo FloodJet®</td>
<td><1%</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Al TeeJet® 110°</td>
<td>N/A</td>
<td><1%</td>
<td></td>
</tr>
</tbody>
</table>

*Data obtained by spraying water at room temperature under laboratory conditions.

VF
Very Fine

F
Fine

M
Medium

C
Coarse

VC
Very Coarse

XC
Extremely Coarse

Droplet size classifications are based on BCPC specifications and in accordance with ASAE Standard S-572 at the date of printing. Classifications are subject to change.
TeeJet Broadcast Nozzles

Turbo TeeJet (TT)

Wide Angle Flat Spray Tip
- Large, round free passages to minimize clogging
- Excellent to use with automatic sprayer controls
- Excellent spray pattern quality
- Superior drift control from 15-90 PSI (1-6 bar)
- Automatic spray alignment with 25612-1-NYR Quick TeeJet cap and gasket
- For application rates, see page 7.

How to order:
Specify tip number. Example:
TT11001-VP — Polymer with VisiFlo® color-coding

AI TeeJet (AI)

Air Induction Spray Tip
- Depending on chemical, produces large, air-filled drops
- Larger droplets for less drift
- Uniform coverage in broadcast spraying
- Nozzle spacing — 20 inches (50 cm)
- Spraying pressure — 20-115 PSI (2-8 bar)
- Automatic spray alignment with 25608-1-NYR Quick TeeJet® cap and gasket
- For application rates, see page 7.

How to order:
Specify tip number. Example:
AI11004-VS — Stainless Steel with VisiFlo color-coding

XR TeeJet (XR)

Extended Range Flat Spray Tip
- Uniform coverage at lower pressures
- Smaller droplets at high pressures for thorough coverage
- Nozzle spacing — 20 inches (50 cm)
- Spraying pressure — 15-60 PSI (1-4 bar)
- Automatic spray alignment with 25614-1-NYR Quick TeeJet® cap and gasket
- Automatic spray alignment for sizes 10 and 15 with 25610-1-NYR Quick TeeJet® cap and gasket
- For application rates, see page 7.

How to order:
Specify tip number. Examples:
XR8004YS — Stainless Steel with VisiFlo color-coding
XR8004VH — Hardened Stainless Steel with VisiFlo color-coding
XR11004-VP — Polymer with VisiFlo color-coding
XR11004-VK — Ceramic with VisiFlo color-coding
XR8010SS — Stainless Steel

TeeJet (TP)

Standard Flat Spray Tip
- Good spray penetration
- Uniform coverage along boom
- Nozzle spacing — 20 inches (50 cm)
- Spraying pressure — 20-60 PSI (2-4 bar)
- Automatic spray alignment with 25612-1-NYR Quick TeeJet® cap and gasket
- Automatic spray alignment for sizes 10 thru 20 with 25610-1-NYR Quick TeeJet® cap and gasket
- For application rates, see page 7.

How to order:
Specify tip number. Examples:
TP1000VS — Stainless Steel with VisiFlo color-coding
TP1000VH — Hardened Stainless Steel with VisiFlo color-coding
TP11012-SS — Stainless Steel
TP1102VS — Polymer with VisiFlo color-coding
TP3000-SS — Stainless Steel
TP8002 — Brass

DG TeeJet (DG)

Drift Guard Flat Spray Tip
- Large droplets to reduce drift
- Removable pre-orifice
- Nozzle spacing — 20 inches (50 cm)
- Spraying pressure — 20-60 PSI (2-4 bar)
- Automatic spray alignment with 25612-1-NYR Quick TeeJet® cap and gasket
- For application rates, see page 7.

How to order:
Specify tip number. Examples:
DG8002VS — Stainless Steel with VisiFlo color-coding
DG11002-VP — Polymer with VisiFlo color-coding

TwinJet (TJ60)

Twin Flat Spray Tip
- Penetrates crop residue or dense foliage
- Smaller droplets for thorough spray coverage
- Nozzle spacing — 20 inches (50 cm)
- Spraying pressure — 20-60 PSI (2-4 bar)
- Automatic spray alignment with 25516-1-NYR Quick TeeJet® cap and gasket
- For application rates, see page 7.

How to order:
Specify tip number. Examples:
TJ60-8002VS — Stainless Steel with VisiFlo color-coding
TJ60-8002 — Brass

www.TeeJet.com
TeeJet Broadcast Spray Nozzles

Turbo FloodJet (TF)

- **Wide Angle Flat Spray Tip**
 - Uniform coverage along boom
 - Pre-entice design produces large droplets to reduce drift
 - Nozzle spacing – 30-40 inches (76.2-101.6 cm)
 - Spray pressure – 30-60 PSI (2-4 bar)
 - Can be used with 25000-25040 Quick TeeJet® cap for automatic alignment
 - For application rates, see page 9.

How to order:
Specify tip number. Examples:
- TF-V34 – Stainless Steel with VisiFlo color-coding
- TF-V4 – Polymer with VisiFlo color-coding

Turbo TurfJet (TTJ)

- **Wide Angle Flat Fan Spray Nozzle**
 - Very large droplets
 - Direct replacement for plastic hollow-cone, low droplet nozzles
 - More precise flow and distribution pattern
 - Larger entice reduces clogging
 - Nozzle spacing – 30-40 inches (76.2-101.6 cm)
 - Spray pressure – 30-75 PSI (2-5 bar)
 - Use Quick TeeJet® cap QJ600-25040
 - For application rates, see page 7 and 9.

How to order:
Specify tip number. Example:
- 1/4TTJ04-VS – Stainless Steel with VisiFlo color-coding

TeeJet Banding and Directed Spray Nozzles

TeeJet (TP E)

- **Standard Even Flat Spray Tip**
 - Ideal for banding over the row or in row middles
 - Uniform coverage across spray pattern
 - Spray pressure – 30-60 PSI (2-4 bar)
 - Automatic spray alignment with 25612-25614 Quick TeeJet® cap and gasket.
 - Automatic spray alignment for sizes 10 thru 20 with 25610-25612 Quick TeeJet® cap and gasket.
 - For application rates, see page 8.

How to order:
Specify tip number. Examples:
- TP8002EVS – Stainless Steel with VisiFlo color-coding
- TP8002EVH – Hardened Stainless Steel with VisiFlo color-coding
- TP8002E-HSG – Hardened Stainless Steel
- TP8002E-S6 – Stainless Steel
- TP8002E – Brass

TeeJet (AI E)

- **Air Induction Even Flat Spray Tip**
 - Depending on chemical, produces large, air-filled drops
 - Larger droplets for less drift
 - Spray pressure – 30-115 PSI (2-8 bar)
 - Can be used with 25698-25694 Quick TeeJet® cap and gasket.
 - For application rates, see page 8.

How to order:
Specify tip number. Example:
- AI5002EVS – Stainless Steel with VisiFlo color-coding

DG TeeJet (DG E)

- **Drift Guard Even Flat Spray Tip**
 - Ideal for banding over the row or in row middles
 - 90° spray angle
 - Excellent for banding application of surface applied herbicides
 - Pre-cutoff design produces larger droplets to reduce drift
 - Spray pressure – 30-60 PSI (2-4 bar)
 - Can be used with 25612-25040 Quick TeeJet® cap and gasket.
 - For application rates, see page 8.

How to order:
Specify tip number. Example:
- DG9002EVS – Stainless Steel with VisiFlo color-coding

Twinjet (TJ60 E)

- **Twin Even Flat Spray Tip**
 - Ideal for banding over the row or in row middles
 - Smaller droplets for thorough coverage
 - Perforates crop residue or dense foliage
 - 40° or 30° spray angles
 - Spray pressure – 30-60 PSI (2-4 bar)
 - Can be used with 25612-25040 Quick TeeJet® cap and gasket.
 - For application rates, see page 8.

How to order:
Specify tip number. Examples:
- TJ60-8002EVS – Stainless Steel with VisiFlo color-coding
- TJ60-8002E – Brass
AIUB TeeJet® (AIUB)

Air Induction Underleaf Banding Spray Tip
- Larger droplets for less drift
- Off-center spray pattern with fat spray characteristics.
- Under leaf banding of pesticides or liquid fertilizers
- Used at the end of the spray boom around the perimeter of the field to protect sensitive areas
- Spraying pressure — 30-115 PSI (2-8 bar)
- Can be used with 250684" NYA Quick TeeJet cap
- For application rates, see page 7, 8.

How to order:
Specify tip number. Examples:
AIUK60525VS — Stainless Steel with ViFlo color-coding

OC TeeJet® (OC)

Off-Center Flat Spray Tip
- Adjustable spray swath when used with single or double TeeJet universal nozzle bodies.
- Available in stainless steel or brass
- Spraying pressures 35-60 PSI (2-4 bar)
- For application rates, see page 8.

How to order:
Specify tip number. Examples:
OC-02 — Brass
OC-SS02 — Stainless Steel

TQ TeeJet® (TQ150)

150° Double Outlet Flat Fan Spray Tip
- Produces medium to fine droplets
- Suggested for post-directed droplets with loose drops in row crops
- Available in stainless steel or brass
- Spraying pressure — 20-65 PSI (1.5-4 bar)
- For application rates, see page 5.

How to order:
Specify tip number. Examples:
TQ150-03-SS — Stainless Steel
TQ150-03 — Brass

Helpful Reminders for Band Spraying

Use care when calculating Field Acres vs. Treated Acres.
Field Acres = Total Acres of Planted Cropland
Treated Acres = Field Acres x Band Width

Row Spacing

Banding GPA Conversion Factors For Various Heights

Banding GPA rate in band widths, multiply the desired GPA by the appropriate factors.

Optimum Spray Heights

<table>
<thead>
<tr>
<th>Angle</th>
<th>20°</th>
<th>30°</th>
<th>40°</th>
<th>50°</th>
</tr>
</thead>
<tbody>
<tr>
<td>65°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FullJets</td>
<td>30°**</td>
<td>39°**</td>
<td>46°**</td>
<td></td>
</tr>
<tr>
<td>FloodJets, TF</td>
<td>24°**</td>
<td>30°**</td>
<td>36°**</td>
<td></td>
</tr>
</tbody>
</table>

*Angle height based on 30 to 45 degree angle of rotation.
**Wide angle spray to height is influenced by nozzle orientation.

The critical factor is to achieve a close spray pattern overlap.
ConeJet® Hollow Cone Spray Tips

TX ConeJet
- VisiFlow® color-coded version consists of stainless steel or ceramic orifice in polypropylene body
- Spraying pressure = 30-200 PSIG (2.0-14 bar)
- Ideal for banding or two or three nozzles over the row
- Finely atomized spray pattern provides thorough coverage

How to order:
Specify to number, material.

Examples:
- TXVS4 — Stainless Steel with VisiFlow color-coding
- TXVK4 — Ceramic with VisiFlow color-coding
- TXSS4 — Stainless Steel
- TX4 — Brass

TXA & TXB ConeJet
- Polypropylene body and ceramic orifice insert for long wear life
- Resists corrosion
- Accepts more abrasive materials
- Popular nozzle sizes fit most sprayers
- Operating pressure to 300 PSI (20 bar)
- Incorporates ISO color-coding scheme
- Ideal for banding with two or three nozzles over the row
- Finely atomized spray pattern provides thorough coverage

How to order:
Specify to number.

Examples:
- TXA8004VK — Ceramic with VisiFlow color-coding
- TXB8004VK — Ceramic with VisiFlow color-coding

TeeJet® Flow Regulators

Note: Always insert Orifice Plate with side marked with number facing the outlet.

MATERIAL: Stainless Steel

To determine the orifice plates you need, use the following equations:

\[
\text{GPM (Per Nozzle)} = \frac{\text{GPA} \times \text{mph} \times W}{5,940}
\]

\[
\text{GPA} = \frac{5,940 \times \text{GPM (Per Nozzle)}}{\text{mph} \times W}
\]
Nozzle Nomenclature

- **Material Codes**
 - | VP | VS | VH | VK | SS | HSS | No Code |
 - | ViscFlex Polymer | ViscSteel | ViscSteelHardened | ViscSteelCeramic | Stainless Steel | Hardened Stainless Steel | Brass |

<table>
<thead>
<tr>
<th>Nozzle Type</th>
<th>Code</th>
<th>Normal Spray Angle</th>
<th>Hose</th>
<th>Available Materials</th>
<th>VP</th>
<th>VS</th>
<th>VH</th>
<th>VK</th>
<th>SS</th>
<th>HSS</th>
<th>No Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo TeeJet</td>
<td>TT</td>
<td>110°</td>
<td>01-03</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al TeeJet</td>
<td>AI</td>
<td>110°</td>
<td>015-10</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al TeeJet Even</td>
<td>AI E</td>
<td>90°</td>
<td>015-05</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XR TeeJet**</td>
<td>XR</td>
<td>100°</td>
<td>01-15</td>
<td>110° • •</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG TeeJet</td>
<td>DG</td>
<td>100°</td>
<td>015-05</td>
<td>110° •</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG TeeJet Even</td>
<td>DG E</td>
<td>90°</td>
<td>015-05</td>
<td>110° •</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeeJet Standard*</td>
<td>TP</td>
<td>60°, 80°, 110°</td>
<td>0667-20</td>
<td>• • •</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeeJet Even*</td>
<td>TP E</td>
<td>40°, 60°, 80°, 90°</td>
<td>01-15</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twiquidet</td>
<td>TQ</td>
<td>110°, 120°, 130°</td>
<td>02-30</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbo FluidJet</td>
<td>TF</td>
<td>—</td>
<td>02-10</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FluidJet</td>
<td>TK</td>
<td>—</td>
<td>03-20</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4K FluidJet</td>
<td>1/4K</td>
<td>—</td>
<td>03-27</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCK FluidJet</td>
<td>DCK</td>
<td>—</td>
<td>20-210</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick Turbo FluidJet</td>
<td>QTF</td>
<td>—</td>
<td>15-120</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbo TorJet</td>
<td>1/4TTJ</td>
<td>—</td>
<td>15-20</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlowJet</td>
<td>FL</td>
<td>—</td>
<td>5-15</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIUB TeeJet</td>
<td>AIUB</td>
<td>65°</td>
<td>025-94</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teeJet L/B</td>
<td>D2514U-L/B</td>
<td>85°</td>
<td>0075-04</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC TeeJet*</td>
<td>QC</td>
<td>—</td>
<td>11-18</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQ TeeJet</td>
<td>MQ</td>
<td>110°</td>
<td>01-09</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Full Cone</td>
<td>TOF</td>
<td>—</td>
<td>2-19</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Disc</td>
<td>D</td>
<td>—</td>
<td>1-15</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CorJet</td>
<td>TX</td>
<td>—</td>
<td>1-25</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXA CoreJet</td>
<td>TXA</td>
<td>60°</td>
<td>0390-04</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXB CoreJet</td>
<td>TXB</td>
<td>80°</td>
<td>0390-04</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StreamJet</td>
<td>HTJU</td>
<td>4°</td>
<td>02-09</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StreamJet</td>
<td>TP</td>
<td>4°</td>
<td>01-09</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Additional capacities and spray angles may be available; inquire.
**See below for additional material information.

XR TeeJet Materials and Sizes

<table>
<thead>
<tr>
<th>Nozzle Type</th>
<th>Spray Angle</th>
<th>Design Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR TeeJet</td>
<td>110°</td>
<td>015-08, 01-15, 11-08, 02-08, 10-15</td>
</tr>
<tr>
<td>XR TeeJet</td>
<td>90°</td>
<td>015-08, 01-15, 11-08, 02-08, 10-15</td>
</tr>
</tbody>
</table>

[www.TeeJet.com]